Oberflächenbehandlung
Putze
Beschichtungen
Bekleidungen
OBERFLÄCHEN-BEHANDLUNG

PUTZE
BESCHICHTUNGEN
BEKLEIDUNGEN

Dieser Bericht wurde erstellt vom Anwendungstechnischen Ausschuss des Bundesverbandes Porenbeton:
Dipl.-Ing. Michael Eckart, Dr.-Ing. Werner Fetter, Dipl.-Ing. Georg Flasenberg
Dipl.-Ing. Baldur Höck, Dr.-Ing. Andreas Kiesewetter
<table>
<thead>
<tr>
<th>Inhaltsverzeichnis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhaltverzeichnis ... 3</td>
</tr>
<tr>
<td>Allgemeine Vorbemerkungen .. 7</td>
</tr>
<tr>
<td>1 Putze .. 8</td>
</tr>
<tr>
<td>1.1 Allgemeines ... 8</td>
</tr>
<tr>
<td>1.1.1 Mineralische Putze .. 8</td>
</tr>
<tr>
<td>1.1.2 Putze mit organischen Bindemitteln 8</td>
</tr>
<tr>
<td>1.1.3 Leichtputze .. 10</td>
</tr>
<tr>
<td>1.1.4 Unterputz und Oberputz (zweilagige Putze) 10</td>
</tr>
<tr>
<td>1.1.5 Einlagige Putze .. 10</td>
</tr>
<tr>
<td>1.1.6 Anforderungen ... 10</td>
</tr>
<tr>
<td>1.1.7 Putzgrund .. 10</td>
</tr>
<tr>
<td>1.1.8 Putzbewehrung .. 11</td>
</tr>
<tr>
<td>1.1.9 Verarbeitung ... 11</td>
</tr>
<tr>
<td>1.2 Außenputze .. 12</td>
</tr>
<tr>
<td>1.2.1 Allgemeines .. 12</td>
</tr>
<tr>
<td>1.2.2 Anforderungen an Außenputze ... 12</td>
</tr>
<tr>
<td>1.2.3 Zweilagige Leichtputze auf Porenbetonmauerwerk 12</td>
</tr>
<tr>
<td>1.2.4 Einlagige Leichtputze auf Porenbetonmauerwerk 13</td>
</tr>
<tr>
<td>1.2.5 Kellerwandabdichtung ... 13</td>
</tr>
<tr>
<td>1.2.6 Außensockelputze auf Porenbetonmauerwerk 15</td>
</tr>
<tr>
<td>1.2.7 Kellerwandaußenputze auf Porenbetonmauerwerk 15</td>
</tr>
<tr>
<td>1.3 Innenputze .. 19</td>
</tr>
<tr>
<td>1.3.1 Allgemeines .. 19</td>
</tr>
<tr>
<td>1.3.2 Innenputze nach DIN V 18550 .. 19</td>
</tr>
<tr>
<td>1.3.3 Vorbereitung des Putzgrundes .. 20</td>
</tr>
<tr>
<td>1.3.4 Weitere Putzsysteme auf Porenbeton 20</td>
</tr>
<tr>
<td>1.4 Farbliche Gestaltung ... 22</td>
</tr>
<tr>
<td>1.5 Ausbessern und Instandhalten ... 22</td>
</tr>
<tr>
<td>2 Beschichtungen .. 23</td>
</tr>
<tr>
<td>2.1 Allgemeines ... 23</td>
</tr>
<tr>
<td>2.1.1 Beschichtungsstoffe ... 23</td>
</tr>
<tr>
<td>2.1.2 Anwendungsübersicht ... 23</td>
</tr>
<tr>
<td>2.1.3 Anforderungen .. 23</td>
</tr>
<tr>
<td>2.1.4 Untergründe .. 25</td>
</tr>
<tr>
<td>2.1.5 Armierung (Gewebeeinlagen) .. 25</td>
</tr>
<tr>
<td>2.1.6 Hydrophobierende Imprägnierungen 25</td>
</tr>
<tr>
<td>2.1.7 Graffiti-Verunreinigungen ... 26</td>
</tr>
</tbody>
</table>
2.2 Außenbeschichtungen .. 27
 2.2.1 Allgemeines ... 27
 2.2.2 Bautechnische Voraussetzungen 27
 2.2.3 Anforderungen an die Porenbetonoberfläche 27
 2.2.4 Anforderungen an die Porenbetonbeschichtung 27
 2.2.5 Beschichtungssysteme auf Dispersionsacrylatbasis 28
 2.2.6 Beschichtungssysteme auf Dispersionssilikatbasis 28
 2.2.7 Stahlbetonbauteile ... 29
 2.2.8 Fugenabdichtungen ... 30

2.3 Innenbeschichtungen .. 32
 2.3.1 Allgemeines ... 32
 2.3.2 Beschichtungssysteme .. 32

2.4 Farbliche Gestaltung .. 33

2.5 Renovieren und Instandhalten ... 34
 2.5.1 Allgemeines ... 34
 2.5.2 Beschichtungssysteme .. 34

3 Bekleidungen ... 35
 3.1 Allgemeines ... 35
 3.1.1 Anwendungsbereich .. 35
 3.1.2 Bekleidungen ... 35
 3.1.3 Unterkonstruktion ... 37
 3.1.4 Verankerungen .. 37
 3.1.5 Zusatzdämmung ... 40

3.2 Außenwandbekleidungen ... 41
 3.2.1 Allgemeines ... 41
 3.2.2 Keramische Beläge .. 41
 3.2.3 Kleinformatige Elemente ... 41
 3.2.4 Hinterlüftete Fassaden ... 42

3.3 Innenwandbekleidungen ... 43
 3.3.1 Allgemeines ... 43
 3.3.2 Trockenputz ... 43
 3.3.3 Holzbekleidungen ... 43
 3.3.4 Keramische Beläge ... 43
Alle Vorbemerkungen

Das Berichtsheft gilt für Putze, Beschichtungen und Bekleidungen auf Porenbetonprodukten. Esfasst sind die allgemein üblichen Putz- und Beschichtungsarten sowie Bekleidungen unter Berücksichtigung einer Innen-Gebäudenutzung bei normalen Bedingungen.

Dies gilt auch bei besonderen Beanspruchungen wie:
- hohen Luftfeuchtigkeitswerten (z. B. Schwimmbecken)
- aggressivem Innenraumklima
- extremen Temperaturwechselbelastungen innen und außen (bei Außenbelastung Hellbezugswert der Beschichtung beachten)
- Erschütterungen

1 Putze

1.1 Allgemeines

1.1.1 Mineralische Putze

1.1.2 Putze mit organischen Bindemitteln

<table>
<thead>
<tr>
<th>Putzmörtelgruppe</th>
<th>Mörtelart</th>
</tr>
</thead>
<tbody>
<tr>
<td>P I</td>
<td>Luftkalkmörtel, Wasserkalkmörtel, Mörtel mit hydraulischem Kalk</td>
</tr>
<tr>
<td>P II</td>
<td>Kalkzementmörtel, Mörtel mit hochhydraulischem Kalk oder mit Putz- und Mauerbinder</td>
</tr>
<tr>
<td>P III</td>
<td>Zementmörtel mit oder ohne Zusatz von Kalkhydrat</td>
</tr>
<tr>
<td>P IV</td>
<td>Gipsmörtel und gipshalte Mörtel</td>
</tr>
</tbody>
</table>
Tabelle 2
Putzsysteme für Außenputze nach DIN V 18 550, Tab. 2

<table>
<thead>
<tr>
<th>Zeile</th>
<th>Anforderung bzw. Putzanwendung</th>
<th>Mörtelgruppe für Unterputz</th>
<th>Druckfestigkeitskategorie des Unterputzes nach DIN EN 998-1</th>
<th>Mörtelgruppe bzw. Beschichtungsstoff-Typ für Oberputz (^a)</th>
<th>Druckfestigkeitskategorie des Oberputzes nach DIN EN 998-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>−</td>
<td>−</td>
<td>P I</td>
<td>CS I</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>P I</td>
<td>CS I</td>
<td>P I</td>
<td>CS I</td>
</tr>
<tr>
<td>3a</td>
<td>ohne besondere Anforderung</td>
<td>−</td>
<td>−</td>
<td>P II</td>
<td>CS II</td>
</tr>
<tr>
<td>3b</td>
<td></td>
<td>−</td>
<td>−</td>
<td>P II</td>
<td>CS II</td>
</tr>
<tr>
<td>4a</td>
<td></td>
<td>P II</td>
<td>CS II</td>
<td>P I</td>
<td>CS I</td>
</tr>
<tr>
<td>4b</td>
<td></td>
<td>P II</td>
<td>CS III</td>
<td>P I</td>
<td>CS I</td>
</tr>
<tr>
<td>5a</td>
<td></td>
<td>P II</td>
<td>CS II</td>
<td>P II</td>
<td>CS II</td>
</tr>
<tr>
<td>5b</td>
<td></td>
<td>P II</td>
<td>CS III</td>
<td>P II</td>
<td>CS II</td>
</tr>
<tr>
<td>5c</td>
<td></td>
<td>P II</td>
<td>CS III</td>
<td>P II</td>
<td>CS III</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>P II</td>
<td>CS III</td>
<td>P Org 1</td>
<td>−</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>−</td>
<td>−</td>
<td>P Org 1 (^a)</td>
<td>−</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>−</td>
<td>−</td>
<td>P III</td>
<td>CS IV</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>P I</td>
<td>CS I</td>
<td>P I</td>
<td>CS I</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>−</td>
<td>−</td>
<td>P I</td>
<td>CS I</td>
</tr>
<tr>
<td>11a</td>
<td></td>
<td>−</td>
<td>−</td>
<td>P II</td>
<td>CS II</td>
</tr>
<tr>
<td>11b</td>
<td></td>
<td>−</td>
<td>−</td>
<td>P II</td>
<td>CS III</td>
</tr>
<tr>
<td>12a</td>
<td></td>
<td>P II</td>
<td>CS II</td>
<td>P I</td>
<td>CS I</td>
</tr>
<tr>
<td>12b</td>
<td></td>
<td>P II</td>
<td>CS III</td>
<td>P II</td>
<td>CS I</td>
</tr>
<tr>
<td>13a</td>
<td></td>
<td>P II</td>
<td>CS II</td>
<td>P II</td>
<td>CS II</td>
</tr>
<tr>
<td>13b</td>
<td></td>
<td>P II</td>
<td>CS III</td>
<td>P II</td>
<td>CS II</td>
</tr>
<tr>
<td>13c</td>
<td></td>
<td>P II</td>
<td>CS III</td>
<td>P II</td>
<td>CS II</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>P II</td>
<td>CS III</td>
<td>P Org 1</td>
<td>−</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>−</td>
<td>−</td>
<td>P Org 1 (^a)</td>
<td>−</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>−</td>
<td>−</td>
<td>P III</td>
<td>CS IV</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>P I</td>
<td>CS I</td>
<td>P I</td>
<td>CS I</td>
</tr>
<tr>
<td>18a</td>
<td></td>
<td>P II</td>
<td>CS II</td>
<td>P I</td>
<td>CS I</td>
</tr>
<tr>
<td>18b</td>
<td></td>
<td>P II</td>
<td>CS III</td>
<td>P I</td>
<td>CS I</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>−</td>
<td>−</td>
<td>P I</td>
<td>CS I</td>
</tr>
<tr>
<td>20a</td>
<td></td>
<td>−</td>
<td>−</td>
<td>P II</td>
<td>CS II</td>
</tr>
<tr>
<td>20b</td>
<td></td>
<td>−</td>
<td>−</td>
<td>P II</td>
<td>CS III</td>
</tr>
<tr>
<td>21a</td>
<td></td>
<td>P II</td>
<td>CS II</td>
<td>P II</td>
<td>CS II</td>
</tr>
<tr>
<td>21b</td>
<td></td>
<td>P II</td>
<td>CS III</td>
<td>P II</td>
<td>CS II</td>
</tr>
<tr>
<td>21c</td>
<td></td>
<td>P II</td>
<td>CS III</td>
<td>P II</td>
<td>CS III</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>P II</td>
<td>CS III</td>
<td>P Org 1</td>
<td>−</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>−</td>
<td>−</td>
<td>P Org 1 (^a)</td>
<td>−</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>−</td>
<td>−</td>
<td>P III</td>
<td>CS IV</td>
</tr>
<tr>
<td>25</td>
<td>Kellerwandaussenputz</td>
<td>−</td>
<td>−</td>
<td>P III (^b)</td>
<td>CS IV</td>
</tr>
<tr>
<td>26</td>
<td>Außensockelputz</td>
<td>−</td>
<td>−</td>
<td>P III (^b)</td>
<td>CS IV</td>
</tr>
<tr>
<td>27</td>
<td></td>
<td>P III</td>
<td>CS IV</td>
<td>P III (^b)</td>
<td>CS IV</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>P III</td>
<td>CS IV</td>
<td>P II (^b)</td>
<td>CS III</td>
</tr>
<tr>
<td>31</td>
<td></td>
<td>P II</td>
<td>CS III</td>
<td>P II (^b)</td>
<td>CS II (^c)</td>
</tr>
<tr>
<td>32</td>
<td></td>
<td>P II</td>
<td>CS II (^c)</td>
<td>P II (^b)</td>
<td>CS II (^c)</td>
</tr>
</tbody>
</table>

\(^a\) Nur bei Beton mit geschlossenem Gefüge als Putzgrund.
\(^b\) Ein Sockelputz sowie ein Kellerwandaussenputz sind im erdberührten Bereich immer abzudichten. Der Putz dient als Träger der vertikalen Abdichtung.
\(^c\) > 2,5 N/mm²
\(^d\) Gilt nur für Sanierputze.
1 Putze

1.1.3 Leichtputze

1.1.4 Unterputz und Oberputz (zweilagige Putze)

1.1.5 Einlagige Putze

Anforderungen an die Putzgrund
Mit Putzgrund wird die Fläche bezeichnet, die verputzt werden soll. Vor dem Auftragen des Putzmörtels muss die Putzgrund folgende Voraussetzungen erfüllen:
- frostfrei
- fest
- frei von Staub
- frei von losen Teilen
- frei von tretenden Substanzen

1.1.6 Anforderungen

1.1.7 Putzgrund

Tabelle 3

<table>
<thead>
<tr>
<th>Anforderung an das Putzsystem</th>
<th>Unterputz Leichtputzmörtel entsprechend Mörtelgruppe</th>
<th>Druckfestigkeits-kategorie des Unterputzes nach DIN EN 998-1</th>
<th>Oberputzmörtel a) entsprechend Mörtelgruppe</th>
<th>Druckfestigkeits-kategorie des Oberputzes nach DIN EN 998-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wasserabweisend nach DIN V 18550 Abschnitt 7.4.2.2</td>
<td>–</td>
<td>P I</td>
<td>CS I</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>–</td>
<td>P II</td>
<td>CS II</td>
<td>P I</td>
</tr>
<tr>
<td></td>
<td>P II</td>
<td>CS II</td>
<td>P II</td>
<td>CS II</td>
</tr>
<tr>
<td></td>
<td>P II</td>
<td>CS III</td>
<td>P II</td>
<td>CS II / CS III</td>
</tr>
</tbody>
</table>

a) Leichtputze mit organischem Zuschlag mit porigem Gefüge sind außen nur als Unterputze zu verwenden.

b) Wird ein Leichtputz als Sockelputz verwendet, ist er im erdbereührten Bereich immer zusätzlich abzudichten.

Bild 2 Reihenhaus in Lübeck; Architekt: Jörg Schreckenberg, Lübeck

nach DIN 18 556 und DIN 18 558 genannt.

Anforderungen an das Putzsystem

Anforderungen an die Putzgrund

Anforderungen an das Brandverhalten der Putze sind in der DIN 4102 festgehalten. Wie bei allen Baustoffen werden auch die Putze in Baustoffklassen nach DIN V 18 550 und 18 558 eingeteilt. Es werden zwei Baustoffklassen unterschieden:

- Baustoffklasse A1 (nicht brennbar)
- Baustoffklasse B2 (schwer entflammbar)

Anforderungen an das Brandverhalten der Putze sind in der DIN 4102 festgehalten. La bei allen Baustoffen werden auch die Putze in Baustoffklassen nach DIN V 18 550 und 18 558 eingeteilt. Es werden zwei Baustoffklassen unterschieden:

- Baustoffklasse A1 (nicht brennbar)
- Baustoffklasse B2 (schwer entflammbar)

Anforderungen an das Brandverhalten der Putze sind in der DIN 4102 festgehalten. Wie bei allen Baustoffen werden auch die Putze in Baustoffklassen nach DIN V 18 550 und 18 558 eingeteilt. Es werden zwei Baustoffklassen unterschieden:

- Baustoffklasse A1 (nicht brennbar)
- Baustoffklasse B2 (schwer entflammbar)

1.1.8 Putzbewehrung

1.1.9 Verarbeitung

Bild 3 Sicherung der Gebäudekanten durch Sockelabschlussschienen
Bild 4 Sicherung der Gebäudekanten durch Eckschutzschienen
1.2 Außenputze

1.2.1 Allgemeines

- Ausreichende Dachüberstände schützen eine Wand vor starker Beregnung, zumindest im oberen Teil.

Man unterscheidet bei Außenputzen folgende Anwendungsbereiche:
- Außenwandputz
- Außensockelputz im spritzwassergefährdeten Bereich
- Kelleraußenwandputz im Bereich der Erdanschüttung
- Außendeckeneinsetze auf Deckenunter- und Oberputzen, die der Witterung ausgesetzt sind.

- Entstauben der Oberfläche, z.B. durch Abfegen
- Nach Erfordernis vornässen oder grundieren
- Den Unterputzmörtel von Hand aufziehen bzw. mit einer Putzmaschine auftragen

1.2.2 Anforderungen an Außenputze
Witterungseinflüsse in Form von Regenwasser üben die stärkste Beanspruchung auf Putz im Außenwandbereich aus. In der DIN 4108-3 sind hinsichtlich des Regenschutzes Beanspruchsgruppen dargestellt. Es werden Wasserhemmende und Wasserabweisende Putzsysteme unterschieden. Die heute gebräuchlichen Werk- und Leichtputze sind in den ausgehärteten Zustand Wasser abweisend. Um diesem Anspruch gerecht zu werden, müssen sie folgende Anforderungen erfüllen:

- Wasseraufnahmekoeffizient:
 \[w \leq 0,5 \text{ kg} / (\text{m}^2 \cdot \text{h}^{0,5}) \]

- diffusionsäquivalente Luftschichtdicke:
 \[s_d \leq 2 \text{ m} \]

- Produkt \(w \cdot s_d \):
 \[w \cdot s_d \leq 0,2 \text{ kg} / (\text{m} \cdot \text{h}^{0,5}) \]

Um eine Feuchtigkeitserhöhung im Bau teil zu vermeiden, darf die diffusionsäquivalente Luftschichtdicke \(s_d \) bei Außenputzen den Wert von 2 m in keiner Putzlage überschreiten und soll von innen nach außen abnehmen. Der geringe Wasseraufnahmekoeffizient bewirkt, dass der Putz nur sehr geringe Mengen Wasser kapillar aufnimmt. Durch den sehr niedrigen Wasserdampfdiffusionswiderstand kann das kapillar aufgenommene Wasser sowie produktionsbedingte Feuchtigkeit weitgehend ungehindert bis auf die Aus gleichsfeuchte entweichen. Beschrieben wird dies durch das Produkt aus \(w \cdot s_d \leq 0,2 \text{ kg} / (\text{m} \cdot \text{h}^{0,5}) \) (Berichtsheft 1+2 „Feuchtigkeitsverhältnisse in Au ßenwänden und Flachdächern“).

1.2.3 Zweilagige Leichtputze auf Porenbetonmauerwerk
Ein zweilagiges Leichtputzsystem besteht aus:
- Einem Unterputz (Grundputz) in einer Schichtdicke von mindestens 7 mm (siehe auch Herstellerangaben)
- Ggf. einer darauf folgenden Grundierung im Farbton des Oberputzes (Deckputz)
- Einem Oberputz in unterschiedlichen Struktur- und Farbvarianten

Der Arbeitsablauf stellt sich in der Regel wie folgt dar:
- Entstauben der Oberfläche, z.B. durch Abfegen
- Nach Erfordernis bzw. Angabe des Herstellers auf den Putzgrund vorzäpfeln
- Den Unterputzmörtel von Hand aufziehen bzw. mit einer Putzmaschine auftragen
1.2 Außenputze

- Planebenes Abziehen mit einem Richtscheit
- Nach der vom Hersteller angegebenen Wartezeit wird ggf. eine Grundierung im Farbton des darauf folgenden Oberputzes aufgetragen.
- Oberputz von Hand oder mit der Putzmaschine aufbringen und glätten bzw. Struktur herstellen (z. B. Kratz-, Rillen-, Scheibenputz usw.).

1.2.4 Einlagige Leichtputze auf Porenbetonmauerwerk

Bei diesen Leichtputzen handelt es sich um weiße oder farbige Putze, die mit einem Material in zwei Arbeitsgängen aufgebracht werden. Der Arbeitsablauf stellt sich wie folgt dar:

- Entstauben der Oberflächen, z. B. durch Abfegen
- Nach Erfordernis bzw. Angabe des Herstellers den Putzgrund vornässen oder grundieren
- Aufbringen der ersten Schicht von Hand oder mit der Putzmaschine in einer Schichtdicke von mindestens 10 mm (siehe auch Herstellerangaben).
- Planebenes Abziehen mit einem Richtscheit (Rauhigkeit beachten)
- Nach der vom Werkmörtelhersteller angegebenen Standzeit wird die zweite Schicht in Kornstärke von Hand oder mit der Putzmaschine aufgetragen und je nach Putzcharakter strukturiert.
- Bei gefärbten Putzen kann es zu einem wolkigen Auftröcknen kommen. In diesem Fall kann mit einer Silikatfarbe nach Angabe des Herstellers ein Egalisationsanstrich im gleichen Farbton aufgebracht werden.

1.2.5 Kellerwandabdichtung

Die Wahl der Abdichtungsart ist insbesondere von der Angriffsart des Wassers und der Nutzung des Bauwerks abhängig. Im Weiteren ist die Feststellung der Bodenart, der Geländeform und des Bemessungswasserstandes am geplanten Bauwerksstandort unerlässlich. Darüber hinaus sind thermische und mechanische Beanspruchungen zu beachten. Bei erdberührten Bauteilen, z. B. Kellerwände und Bodenplatten, sind...
1.2 Außenputze

Bodenfeuchte bei nicht bindigem Boden

Aufstauendes Sickerwasser bei bindigem Boden ohne Dränung

Von außen stark drückendes Wasser

Nicht stauendes Sickerwasser bei bindigem Boden mit Dränung

Abb. 1.2.5-1 Wasserbeanspruchung erdberührter Bauwerke nach DIN 18195-4

Abb. 1.2.5-2 Wasserbeanspruchung erdberührter Bauwerke nach DIN 18195-6

neben den allgemeinen Normteilen für die Definition der Lastfälle insbesondere die Teile 4 und 6 der DIN 18195 zu beachten (siehe Abb. 1.2.5-1 und -2). Alle vom Erdboden berührten Außenflächen der Wände sind gegen seitliche Feuchtigkeit abzudichten. Diese muss planmäßig bis 300 mm über Gelände hochgeführt werden, um ausreichende Anpassungs- möglichkeiten der Geländeoberfläche sicherzustellen. Im Endzustand darf dieser Wert 150 mm nicht unterschreiten. Oberhalb des Geländes darf die Abdichtung entfallen, wenn dort ausreichend Wasser abweisende Bauteile verwendet werden. Anderenfalls ist sie hinter der Sockelbekleidung hochzuziehen. Die Abdichtung muss unten bis zum
1.2 Außenputze

1.2.6 Außensockelputze auf Porenbetonmauerwerk

1.2.7 Kellerwandaussenputze auf Porenbetonmauerwerk

1.2 Außenputze

Abb. 1.2.5-3 Sockelausbildung bei einschaligem Kellermauerwerk aus Porenbeton

Abb. 1.2.5-4 Lastausfall nicht stauendes Sickerwasser:
Wandfußausbildung bei bindigem Boden mit Dränung (alternative Ausführungsvarianten sind möglich).
Abb. 1.2.5-5 **Lastfall Bodenfeuchte: Wandfußausbildung bei nicht bindigem Boden**

Abb. 1.2.5-6 **Lastfall aufstauendes Sickerwasser: Wandfußausbildung bei bindigem Boden (alternative Ausführungsvarianten sind möglich).**
Tabelle 4: Zuordnung der Abdichtungsarten nach DIN 18195 zu Wasserbeanspruchung und Bodenart

<table>
<thead>
<tr>
<th>Bauteilart</th>
<th>Wasserart</th>
<th>Einbausituation</th>
<th>Art der Wassereinwirkung</th>
<th>Art der erforderlichen Abdichtung nach</th>
<th>Empfohlene Abdichtung auf Porenbeton</th>
</tr>
</thead>
</table>
| Erdberührte Wände und Bodenplatten oberhalb des Bemessungswassers | Kapillarwasser, Haftwasser, Sickerwasser | stark durchlässiger Boden $k > 10^{-4}$ m/s, z.B: Sand/Kies (siehe DIN 18130-1) | Bodenfeuchte und nicht stauendes Sickerwasser | DIN 18195-4 | Vertikale Abdichtung: Kunststoffmodifizierte Bitumendickbeschichtung 1) oder Bitumendichtungsbahnen
Sockelbereich: Ausreichend wasserabweisender Außenputz mit vorher aufgebrachter flexibler Dichtungsschlämme 2)
Waagerechte Querschnittsabdichtung: Bitumendichtungsbahnen oder flexible Dichtungsschlämme (außerhalb DIN 18195, muss gesondert vereinbart werden)
Alternativ: Ausbildung einer „schwarzen Wanne“ |

1) Richtlinie für die Planung und Ausführung von Abdichtungen erdberührter Bauteile mit kunststoffmodifizierten Bitumendickbeschichtungen
2) Richtlinie für die Planung und Ausführung von Abdichtungen erdberührter Bauteile mit flexiblen Dichtungsschlämmen
3) Bis zu Gründungstiefen von 3 m unter Geländeoberkante
1.3 Innenputze

1.3.1 Allgemeines
Innenputze können die Luftfeuchte im Raum durch Feuchtigkeitsaufnahme und -abgabe ausgleichen und geben darüber hinaus der Wand und der Decke eine ebene, fugenfreie Oberfläche als Untergrund für Farben und Tapeten. Lässt sich ein Wechsel des Putzgrundes nicht vermeiden, z. B. beim Anschluss an Rollladenkästen, ist durch Einlegen von Gewebe dafür zu sorgen, dass der Putz dauerhaft frei von Rissen bleibt. Man unterscheidet für die Innenputze folgende Anwendungsbereiche auf den ihnen zugeordneten Innenflächen:
- Innenwand- und Innendeckenputz für Räume mit üblicher Luftfeuchte einschließlich häuslicher Küchen und Bäder
- Innenwand- und Innendeckenputz für Feuchträume (hier sind zusätzlich besondere Schutzmaßnahmen erforderlich), keine gipshaltigen Putze verwenden

1.3.2 Innenputze nach DIN V 18 550
Gipshaltige Putze
Gipsputz-Werkstoffen sollten speziell auf die Verwendung auf stark saugenden Putzgründen abgestimmt sein. Andernfalls ist zur Reduktion bzw. zur Verringerung des Saugvermögens eine geeignete Grundierung (Aufbrennsperre) aufzutragen, die vor dem Verputzen abgetrocknet sein muss.

Kalk- bzw. Kalkzement-Putze
Bei stark saugenden Putzgründen sieht die DIN V 18 550 im Regelfall eine Vorbehandlung (geeigneter Haftmörtel, voll deckender Spritzbewurf), die Verwendung eines speziellen Putzmaterials oder einer geeigneten Verfahrensweise (zwei- schichtiges Spritzen „nass in nass“ in einer Putzlage) als notwendig an. Bei Porenbeton ist ein Spritzbewurf nicht üblich. Lediglich für Wände in Feuchträu-
1.3 Innenputze

1.3.3 Vorbereitung des Putzgrundes
Zur Vorbereitung bzw. Vorbehandlung des Putzgrundes gehören alle Maßnahmen, die einen festen und dauerhaften Verbund zwischen Putz und Putzgrund fördern.
- Wandecken werden üblicherweise mit Putzschienen versehen.
- Evtl. Fehlstellen sowie Fugen >5 mm werden mit Leichtmörtel geschlossen.
- Bei einigen Putz-Produkten kann auf ein Vornässen des Untergrundes sowie auf eine Grundierung oder einen Spritzbewurf verzichtet werden.
- Für den Handauftrag wird der trockene Fertigputz mit der erforderlichen Wassermenge zu einem homogenen Brei verquirlt.
- Der Putz wird in einer Lage aufgezogen, mit dem Richtscheit geebnet und mit einem Filzbrett, einer Schwammzscheibe oder einer Glättkelle unter Annässen geglättet.

Je nach Rezeptur des Putzes sind optimale Putzdicken von 8 bis 15 mm möglich. Hier sind die Verarbeitungsrichtlinien der Putz-Hersteller im Sinne eines guten Ergebnisses zu beachten.

1.3.4 Weitere Putzsysteme auf Porenbeton

Glättputz
Glättputz ist ein einlagiger Feinputz auf Gipsbasis. Durch eine Kunststoffvergüttung ist sein Wasserrückhaltevermögen so weit verbessert, dass im Gegensatz zu normalen Innenputzen nicht grundiert werden muss. Der Putz wird relativ dünn (Schichtdicke ca. 5 mm) aufgezogen und kann sofort geglättet werden.

Dünllagenputz
Bei Dünllagenputzen sind besonders Anforderungen an die Ebeneheit des Untergrundes zu stellen. Dünllagenputze werden einlagig in einer Dicke von 3 bis 5 mm aufgetragen.

Kunstharzputz
Entsprechend der DIN 18 558 handelt es sich um Beschichtungen mit putzartigem Aussehen, welche auf einen mineralischen Unterputz aufgebracht werden können.

Leichtputze
Für den Innenraumbereich sind Leichtputze auch geeignet.
Tabelle 5
Putzsysteme für Innenputze nach DIN V 18550, Tab. 3

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>P I</td>
<td>CS I</td>
<td>P I</td>
<td>CS I</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>P I</td>
<td>CS II</td>
<td>P I</td>
<td>CS I</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>P I</td>
<td>CS II</td>
<td>P II</td>
<td>CS II</td>
</tr>
<tr>
<td>4a</td>
<td></td>
<td>P II</td>
<td>CS II</td>
<td>P I</td>
<td>CS I</td>
</tr>
<tr>
<td>4b</td>
<td></td>
<td>P II</td>
<td>CS II</td>
<td>P II</td>
<td>CS II</td>
</tr>
<tr>
<td>4c</td>
<td></td>
<td>P II</td>
<td>CS II</td>
<td>P IV</td>
<td></td>
</tr>
<tr>
<td>4d</td>
<td></td>
<td>P II</td>
<td>CS II</td>
<td>P Org 1</td>
<td></td>
</tr>
<tr>
<td>4e</td>
<td></td>
<td>P II</td>
<td>CS II</td>
<td>P Org 2</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>P I</td>
<td>CS I</td>
<td>P III</td>
<td>CS IV</td>
</tr>
<tr>
<td>6a</td>
<td></td>
<td>P III</td>
<td>CS III</td>
<td>P I</td>
<td>CS I</td>
</tr>
<tr>
<td>6b</td>
<td></td>
<td>P III</td>
<td>CS III</td>
<td>P II</td>
<td>CS II</td>
</tr>
<tr>
<td>6c</td>
<td></td>
<td>P III</td>
<td>CS III</td>
<td>P II</td>
<td>CS II</td>
</tr>
<tr>
<td>6d</td>
<td></td>
<td>P III</td>
<td>CS IV</td>
<td>P III</td>
<td>CS IV</td>
</tr>
<tr>
<td>6e</td>
<td></td>
<td>P III</td>
<td>CS III</td>
<td>P Org 1</td>
<td></td>
</tr>
<tr>
<td>6f</td>
<td></td>
<td>P III</td>
<td>CS III</td>
<td>P Org 2</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>P I</td>
<td>CS I</td>
<td>P IV</td>
<td></td>
</tr>
<tr>
<td>8a</td>
<td></td>
<td>P IV</td>
<td></td>
<td>P I d</td>
<td>CS I</td>
</tr>
<tr>
<td>8b</td>
<td></td>
<td>P IV</td>
<td></td>
<td>P II d</td>
<td>CS II</td>
</tr>
<tr>
<td>8c</td>
<td></td>
<td>P IV</td>
<td></td>
<td>P IV</td>
<td></td>
</tr>
<tr>
<td>8d</td>
<td></td>
<td>P IV</td>
<td></td>
<td>P Org 1</td>
<td></td>
</tr>
<tr>
<td>8e</td>
<td></td>
<td>P IV</td>
<td></td>
<td>P Org 2</td>
<td></td>
</tr>
<tr>
<td>9a</td>
<td></td>
<td>P Org 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9b</td>
<td></td>
<td>P Org 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>P II</td>
<td>CS II</td>
<td>P II</td>
<td>CS II</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>P II</td>
<td>CS II</td>
<td>P I d</td>
<td>CS I</td>
</tr>
<tr>
<td>12a</td>
<td></td>
<td>P II</td>
<td>CS II</td>
<td>P II</td>
<td>CS II</td>
</tr>
<tr>
<td>12b</td>
<td></td>
<td>P II</td>
<td>CS III</td>
<td>P Org 1</td>
<td></td>
</tr>
<tr>
<td>13a</td>
<td></td>
<td>P II</td>
<td>CS III</td>
<td>P III</td>
<td>CS III</td>
</tr>
<tr>
<td>13b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14a</td>
<td></td>
<td>P III</td>
<td>CS III</td>
<td>P II</td>
<td>CS II</td>
</tr>
<tr>
<td>14b</td>
<td></td>
<td>P III</td>
<td>CS IV</td>
<td>P III</td>
<td>CS IV</td>
</tr>
<tr>
<td>14c</td>
<td></td>
<td>P III</td>
<td>CS III</td>
<td>P Org 1</td>
<td></td>
</tr>
<tr>
<td>14d</td>
<td></td>
<td>P III</td>
<td>CS IV</td>
<td>P Org 1</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a) Oberputze dürfen mit abschließender Oberflächengestaltung oder ohne ausgeführt werden (z. B. bei zu beschichtenden Flächen).

b) Druckfestigkeit \(\geq 2,0 \text{ N/mm}^2 \)

c) Nur bei Beton mit geschlossenem Gefüge als Putzgrund.

d) Dünnlagige Oberputze.
1.5 Farbliche Gestaltung / 1.6 Ausbessern und Instandhalten

1.4 Farbliche Gestaltung

1.5 Ausbessern und Instandhalten

2 Beschichtungen

2.1 Allgemeines
Eine Beschichtung besteht aus einer oder mehreren in sich zusammenhängenden Schicht(en) auf einem Untergrund. Bei mehrschichtigen Beschichtungen spricht man auch von einem Beschichtungsaufbau oder Beschichtungssystem.
Hat der Beschichtungsstoff eine zusammenhängende Schicht gebildet, so spricht man auch von einem Beschichtungsfilm (nass oder trocken).
Beschichtungen haben die Aufgabe, den Baustoff vor Witterungs-, Umwelt- und ggf. chemischen und mechanischen Beanspruchungen zu schützen. Sie ermöglichen eine Reinigung bzw. vermindern die Verschmutzung einer Baustoffoberfläche. Darüber hinaus übernehmen sie eine Gestaltungsfunktion.

2.1.1 Beschichtungsstoffe
Beschichtungsstoffe bestehen aus Bindemittel, Zusatzstoffen und – wenn sie nicht transparent sind – zusätzlich aus Pigmenten und Füllstoffen.

Der wichtigste Bestandteil eines Beschichtungsstoffes ist das Bindemittel, das dem Beschichtungsstoff seine wesentlichen Eigenschaften verleiht. Deshalb wird ein Beschichtungsstoff in der Regel nach dem verwendeten Bindemittel benannt.

Im Kapitel 2.1.2 Anwendungsübersicht (Tabelle 6) sind die für Porenbeton gebräuchlichsten Beschichtungsstoffe aufgeführt. Diese Beschichtungsstoffe werden im Streich-, Roll- oder Spritzauftrag verarbeitet.

2.1.2 Anwendungsübersicht

Tabelle 6 Die gebräuchlichsten Beschichtungsstoffe 1) für mineralische Untergründe (DIN 18363, Abs. 2.4.1).

<table>
<thead>
<tr>
<th>Bindemittelbasis</th>
<th>Verdünnungsmittel</th>
<th>Trocknung bzw. Erhärtung</th>
<th>bevorzugte Anwendung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acrylharz-Dispersion</td>
<td>Wasser</td>
<td>Physikalisch durch Verdunsten des Wassers und Zusammenfließen der Kunststoffteilchen</td>
<td>Außen- und Innenbeschichtungen strukturbildend oder farbgebend</td>
</tr>
<tr>
<td>Dispersionssilikat</td>
<td>Wasser</td>
<td>Physikalisch durch Verdunsten des Wassers und chemisch durch Verkieselung</td>
<td>Außen- und Innenbeschichtungen strukturbildend, farbgebend, lasierend</td>
</tr>
<tr>
<td>Silikat</td>
<td>Wasser</td>
<td>Physikalisch durch Verdunsten des Wassers und chemisch durch Verkieselung</td>
<td>Außen- und Innenbeschichtungen deckend, lasierend</td>
</tr>
<tr>
<td>Silikonharz / Kunststoffdispersion</td>
<td>Wasser</td>
<td>Silikonharzanteil durch Verdunsten des Wassers, Kunststoffdispersionsanteil durch Verdunsten des Wassers und Zusammenfließen der Kunststoffteilchen</td>
<td>Außenbeschichtungen deckend</td>
</tr>
</tbody>
</table>

1) Im Sinne von DIN 18363 sind Beschichtungsstoffe sowohl Imprägniermittel, deckende und lasierende Farben als auch gefüllte strukturgebende Systeme.

2.1.3 Anforderungen
Die Auswahl eines geeigneten Beschichtungsstoffes oder Beschichtungssystemes richtet sich nach:
a) Art des Baustoffes bzw. Bauteils, also des Untergrundes.
b) Der zu erwartenden Beanspruchung durch
 – Witterung
 – Umweltschadstoffe
 – Chemikalien
 – mechanische Einwirkung.

c) Optischer Gestaltung.

Die Auswahl eines geeigneten Beschichtungsstoffes bzw. -systems für den jeweiligen Anwendungszweck setzt daher Fachkenntnis voraus. Es ist aber auch
2 Beschichtungen

Bild 16 Verwaltungs- und Betriebsgebäude W. Herre, Büttelborn; Architekt: Reinhard Bartsch, Büttelborn
für Fachleute ratsam, die Empfehlung der Beschichtungsstoff- und Baustoffhersteller zu beachten.

Die Porenbetonhersteller geben nur Beschichtungssysteme frei, deren Eignung durch Langzeiterfahrungen an Objekten sowie Laborprüfungen nachgewiesen ist. Die Freigabe erfolgt ausdrücklich namentlich für das System. Dies gilt auch für die Renovierungsbeschichtungen.

2.1.4 Untergründe
Wie schon im vorherigen Abschnitt erwähnt, stellen die unterschiedlichen Baustoffe bzw. Untergründe ganz spezifische Anforderungen an den Beschichtungsstoff.

Allgemein gelten die nachfolgenden Grundvoraussetzungen für das Funktionieren einer Beschichtung.

- Der Untergrund muss sauber sein, d.h. frei von Öl, Fett, Staub oder sonstigen Verschmutzungen und Korrosion.
- Der Untergrund muss oberflächen-trocken sein.
- Der Untergrund muss fest bzw. tragfähig sein.

2.1.5 Armierung (Gewebeeinlagen)

2.1.6 Hydrophobierende Imprägnierungen
Hydrophobierende Imprägnierungen sind keine Beschichtungen. Diese werden jedoch der Vollständigkeit halber hier mitbehandelt, da sie bei außergewöhnlichen Feuchtebelastungen Verwendung finden.
Imprägnierungen bilden auf der Baustoffoberfläche keinen geschlossenen Film wie Beschichtungen, sondern dringen mehr oder weniger tief in die Kapillarporen der Baustoffe ein. In den Kapillarporen wirken die Imprägniersubstanzen (z. B. Siloxane) hydrophob, also Wasser abweisend. Der Baustoff kann nun über seine Kapillarporen kein Wasser mehr aufnehmen. Wasserdampf kann jedoch ungehindert entweichen. Die Austrocknung eines Baustoffes kann so deutlich beschleunigt werden.

2.1.7 Graffiti-Verunreinigungen

Im Falle von Graffiti-Verunreinigungen oder bei gewünschter Anti-Graffiti-Beschichtung zur Vorbeugung ist der fachliche Rat der Hersteller des Beschichtungsstoffs einzuholen.
2.2 Außenbesichtungen

2.2.1 Allgemeines
Während Mauerwerk aus Porenbeton-Plansteinen und -elementen im Außenbereich mit einem mineralischen Leichtputz versehen wird, erhalten die großformatigen Porenbeton-Montagebauteile überwiegend eine Beschichtung. Diese soll den Baukörper schützen und gestalten.

2.2.2 Bautechnische Voraussetzungen

Bei längerer Rohbaustandzeit, insbesondere in der feuchten Jahreszeit, ist eine hydrophobierende Imprägnierung bzw. Grundierung empfehlenswert, die auf das später aufzubringende Beschichtungssystem abgestimmt sein muss.

2.2.3 Anforderungen an die Porenbetonoberfläche
Die Porenbetonoberfläche muss fest sein und frei von Staub und sonstigen Verschmutzungen, die eine Haftung der Beschichtung beeinträchtigen. Ggf. muss die Porenbetonoberfläche mit entsprechenden Verfahren vorbehandelt werden (siehe Tabelle 7).

Die Verarbeitungstemperatur für Beschichtungsstoff, Umluft und Porenbetonoberfläche beträgt bei den heute gebräuchlichen Außenbeschichtungen mindestens 5 °C, maximal 30 °C. Der Beschichtung muss eine Prüfung des Untergrundes vorausgehen, die sich auf die Porenbetonoberfläche beschränkt.

Die in der Tabelle 7 aufgeführten Prüfungen sollten stichprobenartig durchgeführt werden.

2.2.4 Anforderungen an die Porenbetonbeschichtung
Der Baustoff Porenbeton hat hervorragende bauphysikalische Eigenschaften. Um diese Eigenschaften zu erhalten, sind auch spezifische Anforderungen an eine Außenbeschichtung zu stellen. Neben den allgemeinen Anforderungen, die an jede Fassadenbeschichtung gestellt werden, wie Witterungsbeständigkeit, weitestgehende Farbtonstabilität, optische Qualität, Füllkraft usw., muss eine Außenbeschichtung die

<table>
<thead>
<tr>
<th>Prüfung auf</th>
<th>Methode</th>
<th>Merkmale</th>
<th>Maßnahmen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feuchtigkeit</td>
<td>durch Augenschein</td>
<td>dunklere Verfärbung</td>
<td>abtrocknen lassen, Innenräume gut lüften und ggf. zusätzlich heizen, Ursache ggf. beheben lassen</td>
</tr>
<tr>
<td>lose, absandende Teile</td>
<td>Wischprobe mit der</td>
<td>wesentlicher Abrieb</td>
<td>abkehren, abbürsten, ggf. ausbessern, grundieren</td>
</tr>
<tr>
<td>auf der Oberfläche</td>
<td>Hand oder Bürste</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pilz, Algen und Moosbefall</td>
<td>durch Augenschein</td>
<td>sichtbarer Bewuchs</td>
<td>abbürsten, abwaschen und ggf. mit einem Biozidmittel des Beschichtungsstoffherstellers behandeln</td>
</tr>
<tr>
<td>Risse</td>
<td>durch Augenschein</td>
<td>sichtbarer Riss (keine Haarrisse)</td>
<td>Armierung oder besonderes Beschichtungssystem nach Empfehlung des Herstellers</td>
</tr>
<tr>
<td>Verschmutzungen</td>
<td>durch Augenschein</td>
<td>Flecken und Verfärbungen</td>
<td>mit geeignetem Reinigungsverfahren entfernen</td>
</tr>
<tr>
<td>Schadhafte Dichtstoffe</td>
<td>durch Augenschein</td>
<td>sichtbarer Abriss oder Ablösungen</td>
<td>Entfernen und Erneuern der schadhaften Fugenausbildungen</td>
</tr>
</tbody>
</table>
2.2 Außenbeschichtungen

2.2.2 Außenbeschichtungen

Die Spachtelung erfolgt dünnschichtig, d.h. oberflächenstrukturfüllend und glättend. Die Schichtdicke beträgt ca. 1–2 mm. Fugen werden nicht überspachtelt. Das Fugenbild bleibt erhalten. Nach der Trocknung der Spachtelung wird diese ggf. stellenweise glatt geschliffen und entstaubt.

Grundbeschichtung mit einem Dispersions-Tiefgrund auf Acrylbasis
Zwischen- und Schlussbeschichtung mit einer lackähnlichen Dispersions-Acrylatbeschichtung

Für die Verarbeitung sind die technischen Richtlinien (Technische Informationen) der Beschichtungsstoffhersteller zu beachten.

2.2.6 Beschichtungssysteme auf Dispersionsacrylatbasis

Porenbetonbeschichtung mit strukturiert Oberfläche

Beschichtungsaufbau:
- Es wird eine Auftragsmenge von 1800 g/m² empfohlen, sofern der Beschichtungsstoffhersteller nichts anderes benennt.
- Die Beschichtung wird in einem zweimaligen Auftrag aufgebracht.
- Bei einer Erstbeschichtung eines Neubaus ist keine Grundierung der Porenbeton-Montagebauteile erforderlich. Für die Verarbeitung gelten die Verarbeitungsrichtlinien (Technische Informationen) der Hersteller.

Porenbetonbeschichtung mit glatter Oberfläche
Neben der strukturierten Standardporenbetonbeschichtung ist heute auch eine glatte, lackähnliche Oberfläche auf Porenbeton-Montagebauteile möglich.

Beschichtungsaufbau:
- Grundbeschichtung mit einem Dispersions-Tiefgrund auf Acrylbasis
- Zwischen- und Schlussbeschichtung mit einer lackähnlichen Dispersions-Acrylatbeschichtung

Für die Verarbeitung sind die technischen Richtlinien (Technische Informationen) der Beschichtungsstoffhersteller zu beachten.
2.2 Außenbeschichtungen

Bild 21 Porenbetonbeschichtung auf Dispersionssilikatbasis mit strukturierter Oberfläche; Auftragen der Schlussbeschichtung mit Lammfellwalze

Beschichtungsaufbau:
- Die Beschichtung wird in einem zweimaligen Auftrag aufgebracht:
 - Grundbeschichtung, verdünnt mit Fixativ, rollen mit geeigneter Rolle.
 - Schlussbeschichtung, unverdünnt rollen und sofort gleichmäßig strukturieren.
- Bei Erstbeschichtung von neuen Porenbeton-Montagebauteilen ist keine Grundierung erforderlich.

Für die Verarbeitung und Auftragsmengen gelten die Richtlinien der Hersteller.

Porenbetonbeschichtung mit glatter Oberfläche
Optisch anspruchsvolle, glatte Oberflächen können mit folgendem Beschichtungsaufbau erreicht werden.

Beschichtungsaufbau:
- Flächige Spachtelung mit gebrauchsfertiger Spachtelmasse auf Dispersionssilikatbasis. Die Schichtdicke beträgt 1–2 mm. Fugen werden nicht überspachtelt.

Nach Durchtrocknung der Spachtelschicht werden Unebenheiten und Spachtelgrate plangeschliffen (z. B. Korundstein) und entstaubt.
- Auf die Spachtelung wird je nach Herstellervorschrift eine Farbbeschichtung auf Dispersionssilikatbasis aufgebracht.

Für die Verarbeitung und Auftragsmengen gelten die Richtlinien der Hersteller.

Porenbetonbeschichtung strukturierend
Auch mit einer einfachen farbgebenden Schutzbeschichtung können die technischen Anforderungen erfüllt werden. Eine Strukturangleichung ist hierbei nicht möglich.

Beschichtungsaufbau:
- Die Beschichtung wird in einem zweimaligen Auftrag aufgebracht.
 - Grundbeschichtung verdünnt mit Fixativ
 - Schlussbeschichtung auf Dispersionssilikatbasis, unverdünnt

Für die Verarbeitung und Auftragsmengen gelten die Richtlinien der Hersteller.

Mit Dispersionssilikat-Systemen sind auch ein- oder mehrfarbige kreative Gestaltungen der Porenbetonoberfläche möglich, wie z. B. Lasuren, Marmorierungen, Schwamm-, Wickel- und Sprengeltechniken.

2.2.7 Stahlbetonbauteine

Unbeschichtete Betonflächen werden wie folgt beschichtet:
- Grundbeschichtung mit einem Dispersions-Tiefgrund auf Acrylbasis
- Zwischen- und Schlussbeschichtung mit einer für Beton geeigneten Dispersions-Acrylatbeschichtungen
2.2 Außenbeschichtungen

2.2.8 Fugenabdichtungen

- Fugen mit nur dichtender Funktion, z.B. Horizontalfugen zwischen liegend angeordneten Porenbeton-Wandplatten
- Fugen mit nur dichtender Funktion, z.B. Vertikalfugen bei stehend angeordneten Porenbeton-Wandplatten
- Fugen mit dichtender Funktion bei geringer Zug- und Druckbeanspruchung:
 - Vertikalfugen bei liegend angeordneten Porenbeton-Wandplatten
 - Horizontalfugen im Bereich der Abfangkonstruktion (z.B. Konsolen)
 - Wechsel der Befestigungsart (z.B. im Bereich der Attika)
 - Sockelfugen (überwiegend dichtende Funktion)
 - Vertikale Fugen im Bereich von stehend angeordneten Porenbeton-Wandplatten im Raster der Unterkonstruktion
 - Vertikale Abschlussfugen bei zwischen bzw. hinter Stützen montierten Porenbeton-Wandplatten.
 - Fugen im Bereich von intensiven Farbtonwechseln
- Fugen mit dichtender Funktion bei größerer Zug- und Druckbeanspruchung

2.2 Außenbeschichtungen

Fugenausbildungen mit Dichtstoffen

- **Fugenausbildung Typ A** (Vertikalschnitt)
 - Beschichtungssystem außen
 - Auskehlung mit plastischem Fugendichtstoff
 - Auskehlung mit Kunstharzmörtel
 - liegend angeordnete Porenbeton-Wandplatten
 - stehend angeordnete Porenbeton-Wandplatten
 - 1 mm Kunstharzmörtel, bei Nut und Feder ohne Mörtel

- **Fugenausbildung Typ B** (Horizontalschnitt)

Fugenausbildung Typ C

Die Fugenbreite beträgt in der Regel 10–15 mm, die Dichtstoff-Tiefe soll 8–10 mm nicht unterschreiten.

Fugenausbildung Typ D (z. B. Gebäudetrennfuge)

Die Fugenbreite muss für diese Fugenart aufgrund der unterschiedlichen Beanspruchung mindestens 20 mm betragen, die Dichtstoff-Tiefe sollte 12 mm nicht unterschreiten.

Fugenausbildungen mit komprimierten Dichtungsbändern

- **Fugenausbildung Typ E**
 - Beschichtungssystem nicht beschichten (abkleben)
 - Beschichtungssystem kann über das Fugendichtungsband aufgetragen werden, reißt evtl. auf
 - elastischer Fugendichtstoff, Verarbeitungsrichtlinien der Hersteller beachten
 - plastoelastischer Fugendichtstoff, Verarbeitungsrichtlinien der Hersteller beachten
 - Rundprofil, offensporige Schaumstoffschnur mit geflämmter Oberfläche
 - Streifen aus Mineralfaserplatten
 - liegend angeordnete Porenbeton-Wandplatten
 - tragende Stützenkonstruktion

- **Fugenausbildung Typ F**
2.3 Innenbeschichtungen

2.3.1 Allgemeines
Beschichtungen im Innenbereich, überwiegend auf Porenbeton-Montagebauteilen, sollen den Innenraum gestalten und – wenn erforderlich – die Baustoffoberfläche schützen. Im Wesentlichen werden für eine Innenbeschichtung vier Anforderungsgruppen unterschieden:

a) Normale Anforderungen (z. B. Lagerräume, Produktionsstätten)
Die einfache optische Gestaltung steht im Vordergrund. Die Porenbetonoberfläche wird nicht mechanisch, chemisch oder durch erhöhte Luftfeuchtigkeit (Wasserdampf) belastet.

b) Erhöhte optische Anforderungen (z. B. Verkaufsräume, Verwaltungsbereiche)
Auch hier dürfen keine chemischen und mechanischen Belastungen oder erhöhte Luftfeuchtigkeit vorhanden sein. Mit mechanischen Belastungen sind alle Beanspruchungen gemeint, die über die Wasch- bzw. Scheuerbeständigkeit der Beschichtung hinausgehen.

c) Räume mit erhöhter relativer Luftfeuchtigkeit (z. B. Lebensmittelbetriebe, Waschräume)

Hinweis für den Lebensmittelbereich:
Die Beschichtungsstoffe im Lager-, Produktions- und Verkaufsräumen für unverpackte Lebensmittel unterliegen besonderen Anforderungen hinsichtlich der Schadstofffreiheit.

Hinweis für Verfugungen:
In erhöht wasserdampf- oder chemisch belasteten Räumen müssen die Fugen mit einem der Belastung entsprechenden Fugendichtstoff abgedichtet werden.

2.3.2 Beschichtungssysteme

<table>
<thead>
<tr>
<th>Raumgruppen / Aufbau</th>
<th>a. normale Anforderung</th>
<th>b. erhöhte optische Anforderung</th>
<th>c. erhöhte relative Luftfeuchtigkeit >70%</th>
<th>d. chemische Belastung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spachtelung</td>
<td></td>
<td>Hydraulisch erhärtender kunststoffmodifizierter oder silikatischer Porenbetonpachtel</td>
<td>Hydraulisch erhärtender kunststoffmodifizierter Porenbetonpachtel</td>
<td>Hydraulisch erhärtender kunststoffmodifizierter Porenbetonpachtel</td>
</tr>
<tr>
<td>Grundierung</td>
<td>Tiefgrund auf Acryl-Dispersionsbasis oder silikatisches Fixativ (bei Bedarf)</td>
<td>Tiefgrund auf Acryl-Dispersionsbasis oder silikatisches Fixativ (bei Bedarf)</td>
<td>Wasser emulgierte Epoxidharzbeschichtung, Wasserdampf bremsend</td>
<td>Epoxidharzgrundierung</td>
</tr>
<tr>
<td>Zwischenbeschichtung</td>
<td>Dispersionsfarbe oder Dispersionssilikatfarbe, waschbeständig nach DIN 53 778</td>
<td>Dispersionsfarbe oder Dispersionssilikatfarbe, wasch- oder scheuerbeständig nach DIN 53 778</td>
<td>Wasser emulgierte Epoxidharzbeschichtung, Wasserdampf bremsend</td>
<td>Epoxidharzbeschichtung, chemikalienbeständig</td>
</tr>
<tr>
<td>Schlussbeschichtung</td>
<td>Dispersionsfarbe oder Dispersionssilikatfarbe, waschbeständig nach DIN 53 778</td>
<td>Dispersionsfarbe oder Dispersionssilikatfarbe, wasch- oder scheuerbeständig nach DIN 53 778</td>
<td>Wasser emulgierte Epoxidharzbeschichtung, Wasserdampf bremsend</td>
<td>Epoxidharzbeschichtung, chemikalienbeständig</td>
</tr>
</tbody>
</table>

Hinweis:
Der Hellbezugswert ist das Helligkeitsmaß der Körperfarben, ausgedrückt in einer Skala von 1 bis 100, wobei 1 der dunkelste Farbton und 100 der hellste Farbton ist.

Zahlreiche Variationsmöglichkeiten geben dem Planer genügend Spielraum zur Gestaltung. Hierzu verschiedene Beispiele:

Gebäude mit stehend angeordneten Porenbeton-Wandplatten

Gebäude mit liegend angeordneten Porenbeton-Wandplatten

Die anwendungstechnischen Teams der Porenbeton- und Beschichtungsstoffhersteller können auf Anfrage Vorschläge zur farblichen Gestaltung ausarbeiten.
2.5 Renovieren und Instandhalten

2.5.1 Allgemeines

2.5.2 Beschichtungssysteme

Renovieren mit Dispersionsacrylat- Außenbeschichtung
Die Renovierung einer tragfähigen Dis- persionsacrylat-Außenbeschichtung auf Porenbeton (Ausnahme: plastoelasti- sche Altbeschichtungen) erfolgt durch:
• Grundbeschichtung mit geeigneter Haftbrücke auf Acrylharzbasis
• Schlussbeschichtung auf Acrylharz- Dispersionsbasis

Renovieren mit Dispersionssilikat- Außenbeschichtung
Die Renovierung einer tragfähigen Dis- persionssilikat-Außenbeschichtung auf Porenbeton erfolgt durch:
• Grundbeschichtung auf Dispersions- silikatbasis, verdünnt
• Schlussbeschichtung auf Dispersions- silikatbasis, unverdünnt

Die Renovierung einer tragfähigen Dis- persionssilikat-Außenbeschichtung auf Porenbeton erfolgt durch:
• Grundbeschichtung auf Dispersions- silikatbasis, verdünnt mit Fixativ
• Schlussbeschichtung auf Dispersions- silikatbasis, unverdünnt

Die Verarbeitungshinweise der Beschich- tungstoffhersteller sind zu beachten.

Schadstellen mit freiliegenden Be- wehrungsstahl
3 Bekleidungen

3.1 Allgemeines

3.1.1 Anwendungsbereich

3.1.2 Bekleidungen
Bekleidungen stellen ein gestalterisches Element für die Erscheinungsform der Außen- und Innenwand dar und dienen dem Schutz des Bauwerkes vor bauphysikalischen Einflüssen.

Bild 24 Schulz Systemtechnik GmbH, Visbek; Architekt: H. Gewinner, Oldenburg
Im Folgenden wird ein kurzer Überblick über die hauptsächlich für Bekleidungen verwendeten Materialien gegeben.

Metalle

Holz, Holzwerkstoffe

Faserzement
Faserzement ist ein Verbundwerkstoff aus mit Fasern armiertem Zement. Im frischen Zustand ist der Werkstoff beliebig formbar, in erhärtetem Zustand ist er formstabil, witterungsbeständig, fäulnisresistent und nicht brennbar. Die Festigkeit lässt sich durch Pressen und Dampfhitze noch steigern. Faserzement-Fassadenelemente sind als ebene oder gewellte Platten oder als Formteile erhältlich. Der Einbau kann sowohl in Form von großformatigen Platten als auch in kleinformatigen Teilen erfolgen.

Glas

Keramik
Keramische Platten sind farb- und frostbeständig, resistent gegen Schmutz und Umweltbelastungen und weisen einen geringen Unterhalts- und Pflegeaufwand auf. Keramikplatten sind in vielerlei Formaten bis zu einer Plattengröße von 120/120 cm und größer lieferbar.

Naturstein

Kunststoffe
Zu beachten ist bei Kunststoffplatten die hohe thermische Ausdehnung und die evtl. damit verbundene Verformung.

Verbundplatten

3.1.3 Unterkonstruktion

3.1.4 Verankerungen

Allgemeines

Zur Verankerung von Außenwandbekleidungen in Wänden aus Porenbeton-Mauerwerk bzw. -Wandplatten kommen fast ausschließlich Kunststoffdübel und...

Auswahlkriterien
Die wichtigsten Kriterien für die Wahl des richtigen DüBELs sind neben der Zuordnung zum vorhandenen Ankergrund die Montageart, die Art der Belastung sowie die Belastungsgöße (siehe auch Porenbeton-Bericht 18 „Befestigungsmittel“ des Bundesverbandes Porenbeton).

Tragmechanismen
Unter Tragmechanismus ist die Art der Übertragung der äußeren am Befestigungsmedium angreifenden Last in das als Ankergrund dienende Bauteil zu verstehen. Diese Tragmechanismen beruhen auf:

a) Reibschluss durch Spreizung
b) Formschluss aufgrund der Geometrie (im eingebauten Zustand)
c) Stoffschluss durch Verbund des Befestigungselementes mit dem Ankergrund.

Kunststoffdübel
Zur Erzeugung einer reibschlüssigen Verbindung bei Kunststoffdübeln wird, wie auf Abb. 3.1.4-1 dargestellt, eine als Spreizelement dienende Spezialschraube um einen definierten Weg in die Dübelhülse eingedreht. Der Dübel ist dann ordnungsgemäß verankert, wenn die Schraubenspitze die Dübelhülse vollständig durchdringt und weder ein Drehen der Dübelhülse auftritt, noch ein Weiterdrehen der Schraube möglich ist. Bei diesem Montagevorgang findet durch das Spreizelement eine Materialverdrängung im Inneren der Dübelhülse statt, wodurch die Hülse gegen die Bohrlochwandung gepresst wird. Durch diesen Anpressdruck wird in den Kontaktflächen zwischen Dübelhülse und Bohrlochwandung ein Reibschluss mit zusätzlichen Formschluss erzeugt. Dieser Formschluss vergrößert sich, wenn die Bohrlocher nicht gebohrt, sondern mit einem Porenbeton-Stößel hergestellt sind. Bei einer Anwendung in Porenbeton sind wegen der Eigenschaften dieses Baustoffes Kunststoffdübel entwickelt wor-
Bekleidungen

...den, die eine speziell auf den Baustoff abgestimmte Außenkontur besitzen. Bei dem auf Abb. 3.1.4-2 dargestellten Kunststoffdübel wird dabei die Dübelhülse mit spiralförmig profiliertem Außenkontur in das Bohrloch, welches einen geringeren Durchmesser als die Außenkontur der Dübelhülse besitzt, oberflächenbündig eingeschlagen. Bei diesem Einbau kommt eine formschlüssige Verbindung zwischen Dübelhülse und Ankergrund zustande. Durch das anschließende Eindrehen der Schraube um einen definierten Weg in die Dübelhülse wird zusätzlich ein Reibschluss zwischen Dübelhülse und Bohrlochwandung hergestellt.

Für die verschiedenen Größen der Kunststoffdübel sind die zulässigen Anwendungsbedingungen (wie zulässige Last, Achs- und Randabstand sowie Mindestbauteildicke) in Abhängigkeit von der Festigkeit des Porenbetons in den jeweiligen Zulassungsbescheiden angegeben. Die zulässigen Lasten liegen dabei in einem Bereich von 0,2 bis 1,2 kN je Dübel und sind für die Verankerung von Fassadenbekleidungen ausreichend.

Verbundanker mit eingepresster Mörtelmasse

Bei der Montage des auf Abb. 3.1.4-3 dargestellten Injektionsankers wird zuerst das Befestigungselement (gewellte Rohrhülse mit Innengewinde) in das im Porenbeton erstellte Bohrloch gesteckt. Anschließend wird die Injektionsmasse (Trockenmörtel unter Wasserzugabe zu Schnellzementmörtel vermischt) durch das Befestigungselement in das Bohrloch gepresst, wobei die Masse in die Zwischenräume zwischen Befestigungs-

Abb. 3.1.4-2 Beispiel für Kunststoffdübel (speziell für Porenbeton), Montageart: Vorsteckmontage

Für die verschiedenen Größen eines Injektionsankers mit einem mineralischen Mörtel als Injektionsmasse sind die zulässigen Anwendungsbedingungen in Abhängigkeit von der Festigkeit des Porenbetons und der Ankergröße ebenfalls in den jeweiligen Zulassungsbescheiden dargestellt. Die Bandbreite der zulässigen Belastbarkeit schließt an die der Kunststoffdübel an und reicht dabei von 0,6 bis 1,6 kN je Anker.

Nägel
Für Vernagelungen stehen konische, verzinkte Vierkantnägel oder Spiralnägel von 6 bis 18 cm zur Verfügung, die zur Befestigung untergeordneter Bauteile oder Verankerungen verwendet werden (z. B. Konterlattung für Holzbekleidungen). Bei der Anwendung ist darauf zu achten, dass die Nägel wechselseitig schräg eingetrieben werden.

3.1.5 Zusatzdämmung
Generell ist bei Wänden aus Porenbeton aufgrund ihrer hervorragenden Wärmédämmeigenschaften keine zusätzliche Dämmung zur Erfüllung der Anforderungen nach EnEV erforderlich. Sollte jedoch eine Zusatzdämmung gewünscht werden, ist diese problemlos realisierbar.

Wie bei allen anderen Dämmmaßnahmen dürfen auch bei der Dämmung von Außenwänden nur genormte oder bauaufsichtlich zugelassene Dämmstoffe verwendet werden. Generell bieten sich zur Dämmung organische und anorganische Dämmstoffe an.
3.2 Außenwandbekleidungen

3.2.1 Allgemeines

3.2.2 Keramische Beläge
Das direkte Aufbringen von keramischen Belägen auf Außenwandflächen ist zu vermeiden, da insbesondere wegen der thermischen Beanspruchung die Gefahr eines Abscherens des Belages vom Untergrund besteht.

3.2.3 Kleinformatige Elemente

Beispiel für kleinformatige Bekleidungs-Elemente direkt auf Porenbeton genagelt

waagerechte Rechteckdeckung
deutsche Schuppendeckung
Rechteck-Doppeldeckung

Beispiel für kleinformatige Bekleidungs-Elemente auf Lattung und Konterlattung aufgebracht

waagerechte Rechteckdeckung
deutsche Schuppendeckung
Rechteck-Doppeldeckung
3.2 Außenwandbekleidungen

3.2.4 Hinterlüftete Fassaden

Bild 27 Fa. Pack2000, Landshut; Architekt: Architekturbüro Lehner, Deggendorf

Bild 28 Brauerei Bischofshof, Regensburg; Architekt: Peithner
3.3 Innenwandbekleidungen

3.3.1 Allgemeines
Die gewünschten Anforderungen und Aufgaben sowie gestalterische Gründe sind die wesentlichen Kriterien einer Innenwandbekleidung. Was früher dem gehobenen Innenwandausbau vorbehalten war, ist heute zur Selbstverständlichkeit geworden.

3.3.2 Trockenputz

3.3.3 Holzbekleidungen

Hinweis: Auf Hinterlüftung achten.

3.3.4 Keramische Beläge
Für das Ansetzen keramischer Beläge im Innenbereich sind Wände aus Porenbeton geeignet. In den meisten Fällen sind die Oberflächen bereits so eben, dass im Dünnbettverfahren gearbeitet werden kann. Ein Ansetzen im normalen Mörtelbett ist nur bei unebenen Untergrund erforderlich. Für beide Verfahren gelten die Festlegungen der DIN 18352. Das Ansetzen im Dünnbettverfahren ist auf den ebenen Porenbetonflächen besonders vorteilhaft:

Bild 29 und 30
Beispiele für Holzbekleidung an Porenbeton-Dachplatten
Die Fliesen können einfach und in kurzer Zeit angesetzt werden.
- Sie werden nur angedrückt und ausgerichtet.
- Die Fliesen haben eine vollflächige Verbindung mit dem Untergrund.
- Es stehen verarbeitungsfertige Klebmörtel in gleichbleibender Qualität zur Verfügung.
- Es ist nur ein geringer Aufwand an Material und Arbeitskraft erforderlich.

Die Fliesen sind so zu verlegen, dass sie nicht kraftschlüssig an andere Bauteile, wie angrenzende Wände, Böden oder Decken, anschließen. Hier sind Dehnungsfugen erforderlich, die bis auf den Untergrund durchgehen und mit elastischen Fugenmassen geschlossen werden. Ebenso sollten Fliesenflächen mit Längen von ca. 4 m durch Dehnungsfugen unterbrochen werden.